How do you find the integral of int 1/(x+5)^(1/3) dx1(x+5)13dx from 0 to 11?

1 Answer
Oct 27, 2015

I found 5.145.14

Explanation:

I would set x+5=tx+5=t so that dx=dtdx=dt and solve the indefinite integral first as:
int1/t^(1/3)dt=intt^(-1/3)dt=t^(-1/3+1)/(-1/3+1)+c=t^(^2/3)/(2/3)+c=3/2t^(2/3)+c1t13dt=t13dt=t13+113+1+c=t^2323+c=32t23+c
but t=x+5t=x+5 so:
=3/2(x+5)^(2/3)+c=32(x+5)23+c
Now we substitute the extrema and subtract:
=3/2(11+5)^(2/3)-3/2(0+5)^(2/3)=5.14=32(11+5)2332(0+5)23=5.14