How do you find the integral of int(2x)/(x^2+6x+13) dx

1 Answer
Feb 16, 2015

The answer is: ln(x^2+6x+13)-3arctan(1/2(x+3))+c

Follow my passages:

int(2x)/(x^2+6x+13)dx=int(2x+6-6)/(x^2+6x+13)dx=

=int(2x+6)/(x^2+6x+13)dx-6intdx/(x^2+6x+13)=(1)

x^2+6x+13=x^2+6x+9+4=(x+3)^2+4=

=4[1/4(x+3)^2+1]=4[(1/2(x+3))^2+1].

So:

(1)=ln(x^2+6x+13)-6intdx/(4[(1/2(x+3))^2+1])=

=ln(x^2+6x+13)-6/4intdx/((1/2(x+3))^2+1)=

=ln(x^2+6x+13)-3/2*2int(1/2)/((1/2(x+3))^2+1)dx=

=ln(x^2+6x+13)-3arctan(1/2(x+3))+c