How do you find the integral of int(2x)/(x^2+6x+13) dx Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Massimiliano Feb 16, 2015 The answer is: ln(x^2+6x+13)-3arctan(1/2(x+3))+c Follow my passages: int(2x)/(x^2+6x+13)dx=int(2x+6-6)/(x^2+6x+13)dx= =int(2x+6)/(x^2+6x+13)dx-6intdx/(x^2+6x+13)=(1) x^2+6x+13=x^2+6x+9+4=(x+3)^2+4= =4[1/4(x+3)^2+1]=4[(1/2(x+3))^2+1]. So: (1)=ln(x^2+6x+13)-6intdx/(4[(1/2(x+3))^2+1])= =ln(x^2+6x+13)-6/4intdx/((1/2(x+3))^2+1)= =ln(x^2+6x+13)-3/2*2int(1/2)/((1/2(x+3))^2+1)dx= =ln(x^2+6x+13)-3arctan(1/2(x+3))+c Answer link Related questions How do I find the partial fraction decomposition of (2x)/((x+3)(3x+1)) ? How do I find the partial fraction decomposition of (1)/(x^3+2x^2+x ? How do I find the partial fraction decomposition of (x^4+1)/(x^5+4x^3) ? How do I find the partial fraction decomposition of (x^4)/(x^4-1) ? How do I find the partial fraction decomposition of (t^4+t^2+1)/((t^2+1)(t^2+4)^2) ? How do I find the integral intt^2/(t+4)dt ? How do I find the integral int(x-9)/((x+5)(x-2))dx ? How do I find the integral int1/((w-4)(w+1))dw ? How do I find the integral intdx/(x^2(x-1)^2) ? How do I find the integral int(x^3+4)/(x^2+4)dx ? See all questions in Integral by Partial Fractions Impact of this question 12072 views around the world You can reuse this answer Creative Commons License