How do you find the integral of int dx/(e^x +e^-x) from negative infinity to infinity?

1 Answer
Sep 23, 2015

pi/2

Explanation:

f(x)=1/(e^x+e^(-x))
f(-x)=1/(e^(-x)+e^(x))
=>f(x)=f(-x)
=> the given function is even function
sonint_-oo^oo1/(e^x+e^(-x))dx=2int_0^oo1/(e^x+e^(-x))dx=2int_0^ooe^x/(e^(2x)+1)dx=2int_0^ooe^x/((e^x)^2+1)dx
if y =tan^-1x
dy=1/(x^2+1)dx
=>y=int1/(x^2+1)dx=tan^-1x
if you substitute x=e^x then dtan^-1(e^x)=1/((e^x)^2+1)e^xdx
=>2int_0^ooe^x/((e^x)^2+1)dx=2int_0^ood(tan^-1e^(x))dx=2[tan^-1e^x]_0^oo=2[tan^-1oo-tan^-1(1)]=2[pi/2-pi/4]=pi/2