How do you find the integral of #int dx/(e^x +e^-x)# from negative infinity to infinity?

1 Answer
Sep 23, 2015

#pi/2#

Explanation:

#f(x)=1/(e^x+e^(-x))#
#f(-x)=1/(e^(-x)+e^(x))#
=>f(x)=f(-x)
=> the given function is even function
son#int_-oo^oo1/(e^x+e^(-x))dx=2int_0^oo1/(e^x+e^(-x))dx=2int_0^ooe^x/(e^(2x)+1)dx=2int_0^ooe^x/((e^x)^2+1)dx#
if #y =tan^-1x#
#dy=1/(x^2+1)dx#
=>#y=int1/(x^2+1)dx=tan^-1x#
if you substitute #x=e^x# then #dtan^-1(e^x)=1/((e^x)^2+1)e^xdx#
=>#2int_0^ooe^x/((e^x)^2+1)dx=2int_0^ood(tan^-1e^(x))dx=2[tan^-1e^x]_0^oo=2[tan^-1oo-tan^-1(1)]=2[pi/2-pi/4]=pi/2#