How do you find the integral of #int x / (x^2-9) dx# from 1 to infinity?

1 Answer
Oct 19, 2015

That integral diverges.

Explanation:

Because the integrand is undefined at #x=3#, we have to try to evaluate by evaluating two improper integrals:

#int_1^oo x / (x^2-9) dx= int_1^3 x / (x^2-9) dx+int_3^oo x / (x^2-9) dx#
The second of which is improper at both limits of integration, so we need:

#int_1^oo x / (x^2-9) dx= int_1^3 x / (x^2-9) dx+int_3^c x / (x^2-9) dx + int_c^oo x / (x^2-9) dx#
for a chosen #c > 3#.

The first of the integrals is:

#int_1^3 x / (x^2-9) dx = lim_(brarr3^-) int_1^b x / (x^2-9) dx#

# = lim_(brarr3^-) [1/2ln abs(x^2-9)]_1^b#

# = lim_(brarr3^-) [1/2ln abs(x^2-9)]_1^b#

# = lim_(brarr3^-) [1/2ln (9-x^2)]_1^b#

# = lim_(brarr3^-) [1/2ln (9-b^2) - 1/2ln8]#

As #xrarr3^-#, we have #(9-x^2) rarr 0^+#, so #ln(9-b^2) rarr -oo#

The integral diverges.

Because one of the integrals diverges, the entire integral diverges.