How do you find the integral of (x^3-4x-10)/(x^2-x-6)x34x10x2x6 from 0 to 1?

1 Answer
Mar 19, 2018

int_0^1 (x^3-4x-10)/(x^2-x-6)dx = 3/2 + ln( 3/2) 10x34x10x2x6dx=32+ln(32)

Explanation:

Solve first the indefinite integral, noting that:

x^2-x-6 = (x-3)(x+2)x2x6=(x3)(x+2)

x^3-4x-10 = x(x^2-4) -10 = x (x-2) (x+2) -10x34x10=x(x24)10=x(x2)(x+2)10

So:

int (x^3-4x-10)/(x^2-x-6)dx = int (x (x-2) (x+2) -10)/((x-3)(x+2))dxx34x10x2x6dx=x(x2)(x+2)10(x3)(x+2)dx

Simplify and use the linearity of the integral:

int (x^3-4x-10)/(x^2-x-6) dx = int (x (x-2) )/(x-3) dx -10int dx/((x-3)(x+2))x34x10x2x6dx=x(x2)x3dx10dx(x3)(x+2)

Solve the integrals separately. In the first substitute (x-3) = u(x3)=u:

int (x (x-2) )/(x-3) dx = int ((u+3)(u+1))/udux(x2)x3dx=(u+3)(u+1)udu

int (x (x-2) )/(x-3) dx = int (u^2+4u +3)/udux(x2)x3dx=u2+4u+3udu

and always using linearity:

int (x (x-2) )/(x-3) dx = int udu +4 int du +3int (du)/ux(x2)x3dx=udu+4du+3duu

int (x (x-2) )/(x-3) dx = u^2/2 +4 u +3 ln abs ux(x2)x3dx=u22+4u+3ln|u|

and undoing the substitution:

int (x (x-2) )/(x+3) dx = (x-3)^2/2 +4 (x-3) +3 ln abs (x-3)+Cx(x2)x+3dx=(x3)22+4(x3)+3ln|x3|+C

Solve the second integral with partial fraction decomposition:

1/((x-3)(x+2)) = A/(x-3)+B/(x+2)1(x3)(x+2)=Ax3+Bx+2

1 = A(x+2) +B(x-3)1=A(x+2)+B(x3)

1 = (A+B)x + (2A -3B)1=(A+B)x+(2A3B)

{(A+B=0),(2A-3B=1):}

{(A=1/5),(B=-1/5):}

So:

int dx/((x-3)(x+2)) = 1/5 int dx/(x-3) -1/5 int dx/(x+2)

int dx/((x-3)(x+2)) = 1/5ln abs(x-3) -1/5 ln abs(x+2)+C

Put together the partial results:

int (x^3-4x-10)/(x^2-x-6)dx = (x-3)^2/2 +4 (x-3) +3 ln abs (x-3)-2 ln abs(x-3) +2 ln abs(x+2)+C

Simplifying and absorbing the constants in C:

int (x^3-4x-10)/(x^2-x-6)dx = x^2/2 +x + ln abs (x-3)+2 ln abs(x+2)+C

Now:

int_0^1 (x^3-4x-10)/(x^2-x-6)dx = 1/2 +1 +ln 2+2ln 3 - ln3 -2ln2

int_0^1 (x^3-4x-10)/(x^2-x-6)dx = 3/2 - ln 2+ln 3

int_0^1 (x^3-4x-10)/(x^2-x-6)dx = 3/2 + ln( 3/2)