How do you find the intercept and vertex of f(x)= -4x^2 + 4x + 4?
2 Answers
Vertex:
Explanation:
Given:
f(x) = -4x^2+4x+4
We can complete the square to get this into vertex form:
f(x) = -4x^2+4x+4
color(white)(f(x)) = -4(x^2-x-1)
color(white)(f(x)) = -4(x^2-x+1/4-5/4)
color(white)(f(x)) = -4((x-1/2)^2-5/4)
color(white)(f(x)) = -4(x-1/2)^2+5
This is in vertex form:
f(x) = a(x-h)^2+k
where
We can use the difference of squares identity:
a^2-b^2 = (a-b)(a+b)
with
f(x) = -4(x-1/2)^2+5
color(white)(f(x)) = -((2(x-1/2))^2-(sqrt(5))^2)
color(white)(f(x)) = -(2(x-1/2)-sqrt(5))(2(x-1/2)+sqrt(5))
color(white)(f(x)) = -(2x-1-sqrt(5))(2x-1+sqrt(5))
Hence the zeros are:
x = 1/2(1+-sqrt(5))
So the
(1/2+sqrt(5)/2, 0)" " and" "(1/2 - sqrt(5)/2, 0)
The
graph{-4x^2+4x+4 [-4, 4, -3.12, 6.88]}
Vertex
Intercept
Explanation:
Given -
f(x)=-4x^2+4x+4
y - intercept
At x = 0;
y=-4(0)^2+4(0)+4=0
y=4
Intercept
Vertex
x=(-b)/(2xxa)=(-4)/(2 xx(-4))=(-4)/(-8)=1/2=0.5
At
y=-4(0.5)^2+4(0.5)+4=-1+2+4=5
Vertex