How do you find the inverse of f(x)=2-3 log_4(x+1)?

2 Answers
Dec 1, 2015

f^(-1)(x) = 4^((2-x)/3)-1

Explanation:

To find the inverse of a function f(x) we can let y = f(x) and then solve for x to obtain x = f^(-1)(y)
(To see why the inverse function is obtained, substitute f(x) back in for y and note that the new function applied to the original returns x).

Applying this here:

Let y = f(x) = 2-3log_4(x+1)

=> 3log_4(x+1) = 2 - y

=> log_4(x+1) = (2-y)/3

=>4^(log_4(x+1)) = 4^((2-y)/3)

=> x+1 = 4^((2-y)/3)

=> x = 4^((2-y)/3)-1

Thus we have f^(-1)(y) = 4^((2-y)/3)-1

meaning

f^(-1)(x) = 4^((2-x)/3)-1

Dec 1, 2015

y=4^((2-x)/3)-1

Explanation:

Rewrite as y=2-3log_4(x+1).

Swap the x and y.

x=2-3log_4(y+1)

Solve for y.

x-2=-3log_4(y+1)

(2-x)/3=log_4(y+1)

4^((2-x)/3)=y+1

y=4^((2-x)/3)-1

This can be solved another way. Return to x-2=-3log_4(y+1).

x-2=log_4(y+1)^-3

4^(x-2)=(y+1)^-3

Raise both sides to the -1/3 power.

4^(-1/3(x-2))=y+1

Again, we get:

y=4^((2-x)/3)-1