How do you find the inverse of f(x) = 200*3^(x/4) ?

1 Answer
Apr 7, 2018

See below

Explanation:

Given: y= 200*3^(x/4)

  1. Switch the x and the y:
    x= 200*3^(y/4)
  2. Solve for y by dividing by 200:
    x/200=3^(y/4)
  3. Apply logarithm:
    log_3(x/200)= y/4
  4. Multiply by 4 on both sides:
    4log_3(x/200)= y
  5. Write with inverse notation:
    f^(-1)(x)=4log_3(x/200)

  6. Symmetric across y=x check:
    graph{200*3^(x/4) [-71.4, 102.55, -11.7, 75.25]} graph{y=x [-62.74, 111.2, -64.9, 22.06]}
    graph{4((log(x/200))/log3) [-62.74, 111.2, -64.9, 22.06]}