How do you find the inverse of f(x) = 200*3^(x/4) ?
1 Answer
Apr 7, 2018
See below
Explanation:
Given:
- Switch the x and the y:
x= 200*3^(y/4) - Solve for y by dividing by 200:
x/200=3^(y/4) - Apply logarithm:
log_3(x/200)= y/4 - Multiply by 4 on both sides:
4log_3(x/200)= y -
Write with inverse notation:
f^(-1)(x)=4log_3(x/200) -
Symmetric across
y=x check:
graph{200*3^(x/4) [-71.4, 102.55, -11.7, 75.25]} graph{y=x [-62.74, 111.2, -64.9, 22.06]}
graph{4((log(x/200))/log3) [-62.74, 111.2, -64.9, 22.06]}