How do you find the inverse of f(x)=(x-4)/(33-x)?

1 Answer
Dec 31, 2016

The inverse is =(33x+4)/(1+x)

Explanation:

Let y=f(x)=(x-4)/(33-x)

Then,

y(33-x)=x-4

33y-xy=x-4

33y+4=x+xy

x(1+y)=33y+4

x=(33y+4)/(1+y)

Therefore,

f^(-1)(x)=(33x+4)/(1+x)

Verification,

f(f^(-1)(x))=f((33x+4)/(1+x))=((33x+4)/(1+x)-4)/(33-(33x+4)/(1+x))

=(33x+4-4-4x)/(33+33x-33x-4)

=(29x)/(29)

=x