How do you find the inverse of #y=(3x-7)/(x+9)#?

1 Answer
Apr 17, 2018

Given: #y=(3x-7)/(x+9)#

Write as a function of x:

#f(x)=(3x-7)/(x+9)#

Substitute #f^-1(x)# for every x:

#f(f^-1(x))=(3f^-1(x)-7)/(f^-1(x)+9)#

The property #f(f^-1(x)) = x# tells us that the left side becomes x:

#x=(3f^-1(x)-7)/(f^-1(x)+9)#

Multiply both sides by #f^-1(x)+9#:

#x(f^-1(x)+9)=3f^-1(x)-7#

Use the distributive property on the left:

#xf^-1(x)+9x=3f^-1(x)-7#

Add -3f^-1(x) - 9x to both sides:

#xf^-1(x)-3f^-1(x)= -9x-7#

Multiply both sides by -1:

#3f^-1(x)-xf^-1(x)= 9x+7#

Factor out #f^-1(x)#:

#(3-x)f^-1(x)= 9x+7#

Divide both sides by #3-x#

#f^-1(x)= (9x+7)/(3-x)#

One cannot declare that the above is #f^-1(x)# until one has checked that #f(f^-1(x)) = x# and #f^-1(f(x))=x#:

Start with:

#f(x)=(3x-7)/(x+9)#

Substitute #x = f^-1(x) = (9x+7)/(3-x)#:

#f(f^-1(x))=(3(9x+7)/(3-x)-7)/((9x+7)/(3-x)+9)#

#f(f^-1(x))=(3(9x+7)-7(3-x))/((9x+7)+9(3-x))#

#f(f^-1(x))=(27x+21-21+7x)/(9x+7+27-x)#

#f(f^-1(x))=(34x)/34#

#f(f^-1(x))=x larr# the first part checks.

Start with:

#f^-1(x)= (9x+7)/(3-x)#

Substitute #x = f(x) = (3x-7)/(x+9)#:

#f^-1(f(x))= (9(3x-7)/(x+9)+7)/(3-(3x-7)/(x+9))#

#f^-1(f(x))= (9(3x-7)+7(x+9))/(3(x+9)-(3x-7))#

#f^-1(f(x))= (27x-63+7x+63)/(3x+27-3x+7)#

#f^-1(f(x))= (34x)/34#

#f^-1(f(x))= x#

Both check, therefore, #f^-1(x)= (9x+7)/(3-x)#