How do you find the instantaneous rate of change of 2/(sqrt(x) + 1) using the lim_(h->0) method?

1 Answer
Aug 18, 2017

(-1)/(sqrtx(sqrtx+1)^2)

See explanation for method.

Explanation:

The limit definition of the derivative states that the derivative of a function f is given by:

f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h

So here, where f(x)=2/(sqrtx+1), we see that:

f'(x)=lim_(hrarr0)(2/(sqrt(x+h)+1)-2/(sqrtx+1))/h

Now, just power through some algebra:

f'(x)=2lim_(hrarr0)((sqrtx+1-(sqrt(x+h)+1))/((sqrt(x+h)+1)(sqrtx+1)))/h

f'(x)=2lim_(hrarr0)(sqrtx-sqrt(x+h))/(h(sqrt(x+h)+1)(sqrtx+1))

Multiply the numerator and denominator by the conjugate of the numerator:

f'(x)=2lim_(hrarr0)((sqrtx-sqrt(x+h))(sqrtx+sqrt(x+h)))/(h(sqrt(x+h)+1)(sqrtx+1)(sqrtx+sqrt(x+h)))

f'(x)=2lim_(hrarr0)(x-(x+h))/(h(sqrt(x+h)+1)(sqrtx+1)(sqrtx+sqrt(x+h)))

f'(x)=2lim_(hrarr0)(-h)/(h(sqrt(x+h)+1)(sqrtx+1)(sqrtx+sqrt(x+h)))

f'(x)=2lim_(hrarr0)(-1)/((sqrt(x+h)+1)(sqrtx+1)(sqrtx+sqrt(x+h)))

Now we can evaluate the limit, since h is out of the denominator:

f'(x)=(-2)/((sqrt(x+0)+1)(sqrtx+1)(sqrtx+sqrt(x+0))

f'(x)=(-2)/((sqrtx+1)(sqrtx+1)(sqrtx+sqrtx)

f'(x)=(-1)/(sqrtx(sqrtx+1)^2)