How do you find the Maclaurin series of f(x)=cosh(x)f(x)=cosh(x) ?

1 Answer
Sep 25, 2014

f(x)=coshx=sum_{n=0}^infty{x^{2n}}/{(2n)!}f(x)=coshx=n=0x2n(2n)!

Let us look at some details.

We already know

e^x=sum_{n=0}^infty x^n/{n!}ex=n=0xnn!

and

e^{-x}=sum_{n=0}^infty {(-x)^n}/{n!}ex=n=0(x)nn!,

so we have

f(x)=coshx=1/2(e^x+e^{-x})f(x)=coshx=12(ex+ex)

=1/2(sum_{n=0}^infty x^n/{n!}+sum_{n=0}^infty (-x)^n/{n!})=12(n=0xnn!+n=0(x)nn!)

=1/2sum_{n=0}^infty( x^n/{n!}+(-x)^n/{n!})=12n=0(xnn!+(x)nn!)

since terms are zero when nn is odd,

=1/2sum_{n=0}^infty{2x^{2n}}/{(2n)!}=12n=02x2n(2n)!

by cancelling out 22's,

=sum_{n=0}^infty{x^{2n}}/{(2n)!}=n=0x2n(2n)!