How do you find the maximum value of f(x) = sinx ( 1+ cosx) ?

1 Answer
Apr 28, 2018

Please see the explanation below.

Explanation:

The maximum value is calculated with the first and second derivatives.

The function is

f(x)=sinx(1+cosx)=sinx+sinxcosx

=sinx+1/2sin2x

The first derivative is

f'(x)=cosx+2xx1/2cos(2x)

f'(x)=0

When

cosx+cos2x=0

2cos^2x+cosx-1=0

Solving this quadratic equation in cosx

The solutions are

cosx=(-1+-sqrt((-1)^2-4(2)(-1)))/(4)=(-1+-3)/4

{(cosx=-1),(cosx=1/2):}

<=>, {(x=pi+2kpi),(x=pi/3+2kpi),(x=5/3pi+2kpi):}

The second derivative is

f''(x)=-sinx-2sin(2x)

Therefore,

{(f''(pi)=-0-0=0),(f''(pi/3)=-sqrt3/2-sqrt3 <0),(f''(5/3pi)=sqrt3/2+sqrt3>0):}

When (x=pi +2kpi) corresponds to points of inflexions.

When x=pi/3+2kpi corresponds to maximum

When x=5/3pi+2kpi corresponds to minimum

graph{sinx+1/2sin(2x) [-2.08, 10.404, -2.845, 3.395]}