How do you find the measure of each of the angles of a triangle given the measurements of the sides are 12, 20, 22?

1 Answer
Dec 6, 2016

Use the Law of Cosines as demonstrated below.

Explanation:

Let /_AA be the angle opposite side abs(a)=22|a|=22
and /_BB be the angle opposite side abs(b)=20|b|=20
and /_CC be the angle opposite side abs(c)=12|c|=12

The Law of Cosines tells us that
color(white)("XXX")abs(a)^2=abs(b)^2+abs(c)^2-2abs(b)abs(c)cos(A)XXX|a|2=|b|2+|c|22|b||c|cos(A)
or (in a form more useful for this problem):
color(white)("XXX")cos(/_A)= (abs(b)^2+abs(c)^2-abs(a)^2)/(2abs(b)abs(c))XXXcos(A)=|b|2+|c|2|a|22|b||c|
or...
color(white)("XXX")/_A = "arccos"((abs(b)^2+abs(c)^2-abs(a)^2)/(2abs(b)abs(c)))XXXA=arccos(|b|2+|c|2|a|22|b||c|)

Using the given values (and a calculator)
color(white)("XXX")/_A ~~ 1.445468XXXA1.445468 (radians)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Similarly, we can find:
color(white)("XXX")/_B~~1.124289XXXB1.124289 (radians)
and
color(white)("XXX")/_C~~0.571835XXXC0.571835 (radians)