Let /_A∠A be the angle opposite side abs(a)=22|a|=22
and /_B∠B be the angle opposite side abs(b)=20|b|=20
and /_C∠C be the angle opposite side abs(c)=12|c|=12
The Law of Cosines tells us that
color(white)("XXX")abs(a)^2=abs(b)^2+abs(c)^2-2abs(b)abs(c)cos(A)XXX|a|2=|b|2+|c|2−2|b||c|cos(A)
or (in a form more useful for this problem):
color(white)("XXX")cos(/_A)= (abs(b)^2+abs(c)^2-abs(a)^2)/(2abs(b)abs(c))XXXcos(∠A)=|b|2+|c|2−|a|22|b||c|
or...
color(white)("XXX")/_A = "arccos"((abs(b)^2+abs(c)^2-abs(a)^2)/(2abs(b)abs(c)))XXX∠A=arccos(|b|2+|c|2−|a|22|b||c|)
Using the given values (and a calculator)
color(white)("XXX")/_A ~~ 1.445468XXX∠A≈1.445468 (radians)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Similarly, we can find:
color(white)("XXX")/_B~~1.124289XXX∠B≈1.124289 (radians)
and
color(white)("XXX")/_C~~0.571835XXX∠C≈0.571835 (radians)