How do you find the minimum and maximum value of y=-(x-1)(x+4)?

1 Answer
Jul 28, 2018

y=-(x-1)(x+4) = -(x^2 + 3x - 4)

Completing the square:

= -((x + 3/2)^2 - 9 /4- 4)

= -((x + 3/2)^2 - 25 /4 )

implies y = -(x + 3/2)^2 + 25 /4

Now:

(x + 3/2)^2 ge 0 qquad forall x

:. - (x + 3/2)^2 le 0 qquad forall x

:. y le 25/4 qquad forall x

implies {(y_("max") = 25/4),(y_("max") = - oo):}

graph{-(x-1)(x+4) [-5, 5, -9.01, 9.01]}