How do you find the product -3p^4r^3(2p^2r^4-6p^6r^3-5)?

1 Answer
Apr 12, 2017

-6p^6r^7 + 18p^10r^6 + 15p^4r^3

Explanation:

First distribute. Make sure to distribute the negative signs correctly:

-3p^4r^3(2p^2r^4 - 6p^6r^3 - 5)

= (-3)(2)p^4p^2r^3r^4 + (-3)(-6)p^4p^6r^3r^3 + (-3)(-5)p^4r^3

Multiply the constants:

= -6p^4p^2r^3r^4 +18p^4p^6r^3r^3 + 15p^4r^3

Use the exponent rule x^m x^n = x^(m+n) to add the exponents of like variables:

= -6 p^(4+2) r^(3+4) + 18 p^(4+6) r^(3+3) + 15 p^4r^3

= -6 p^6 r^7 + 18 p^10 r^6 + 15 p^4 r^3