How do you find the product -9g(-2g+g^2)+3(g^2+4)9g(2g+g2)+3(g2+4)?

1 Answer
Jul 9, 2017

See a solution process below:

Explanation:

First, expand the terms in parenthesis by multiplying each term within the parenthesis by the term outside the parenthesis:

color(red)(-9g)(-2g + g^2) + color(blue)(3)(g^2 + 4) =>9g(2g+g2)+3(g2+4)

(color(red)(-9g) xx -2g) + (color(red)(-9g) xx -g^2) + (color(blue)(3) xx g^2) + (color(blue)(3) xx 4) =>(9g×2g)+(9g×g2)+(3×g2)+(3×4)

18g^2+ (-9g^3) + 3g^2 + 12 =>18g2+(9g3)+3g2+12

18g^2 - 9g^3 + 3g^2 + 1218g29g3+3g2+12

Next, group like terms:

-9g^3 + 18g^2 + 3g^2 + 129g3+18g2+3g2+12

Now, combine like terms:

-9g^3 + (18 + 3)g^2 + 129g3+(18+3)g2+12

-9g^3 + 21g^2 + 129g3+21g2+12