How do you find the real factors of 49x^6-140x^4+260x^2-169?49x6140x4+260x2169?

2 Answers
Oct 21, 2016

49(x-1)(x+1)(x^2+sqrt273/7x+13/7)(x^2-sqrt273/7x+13/7)49(x1)(x+1)(x2+2737x+137)(x22737x+137)

Explanation:

The sum of the coefficients in

f(x)=49x^6-140x^4+260x^2-169f(x)=49x6140x4+260x2169 is 0.

So, x-1x1 is a factor.

As f(-x) -f(x)f(x)f(x), x+1 is also a factor.

Let f(x)=49(x^2-1)(x^2+ax+c)(x^2+bx+d)f(x)=49(x21)(x2+ax+c)(x2+bx+d)

Equating coefficients of x^k, k =5, 4, 3, 2, 1, 0xk,k=5,4,3,2,1,0,, in order,

49(a+b)=0 to b=-a49(a+b)=0b=a.

49(c+d+ab)=-140 to c+d-a^2=-20/7 49(c+d+ab)=140c+da2=207

49(ad+bc-a-b)=0 to c=d49(ad+bcab)=0c=d

49(cd-ab-c-d)=260 to a^2+c^2-2c=260/49 to a=+-sqrt273/749(cdabcd)=260a2+c22c=26049a=±2737

49(-ad-bc)=0 to c=d49(adbc)=0c=d

49cd=-169 to c^2=169/49 to c = +-13/7.49cd=169c2=16949c=±137.

The negative c would make a^2a2 negative.

So, c = 13/7c=137.

Now, f(x)=f(x)=

49(x-1)(x+1)(x^2+sqrt273/7x+13/7)(x^2-sqrt273/7x+13/7)49(x1)(x+1)(x2+2737x+137)(x22737x+137)

Sign test shows that the number of real factors is restricted to the

maximum of 2. There fore, there are four complex linear factors

occurring in conjugate pairs that combine to form the real qadratic

factors in the answer.,

Note that I have not used i=sqrt(-1)i=1, in this method.

Oct 29, 2016

49x^6-140x^4+260x^2-16949x6140x4+260x2169

=(x-1)(x+1)(7x^2-sqrt(273)x+13)(7x^2+sqrt(273)x+13)=(x1)(x+1)(7x2273x+13)(7x2+273x+13)

Explanation:

f(x) = 49x^6-140x^4+260x^2-169f(x)=49x6140x4+260x2169

Note that the sum of the coefficients is 00, that is:

49-140+260-169 = 049140+260169=0

and hence f(1) = 0f(1)=0, x = 1x=1 is a zero and (x-1)(x1) a factor.

Also f(-1) = f(1) = 0f(1)=f(1)=0, so (x+1)(x+1) is a factor too:

(x-1)(x+1) = x^2-1(x1)(x+1)=x21

and we find:

49x^6-140x^4+260x^2-169 = (x^2-1)(49x^4-91x^2+169)49x6140x4+260x2169=(x21)(49x491x2+169)

We can factor the remaining quartic using the identity:

(a^2-kab+b^2)(a^2+kab+b^2) = a^4+(2-k^2)a^2b^2+b^4(a2kab+b2)(a2+kab+b2)=a4+(2k2)a2b2+b4

Put a = sqrt(7)xa=7x, b = sqrt(13)b=13

Then a^2b^2 = 7x^2*13 = 91x^2a2b2=7x213=91x2

So we want 2-k^2 = -12k2=1 and we can choose k=sqrt(3)k=3

Then:

49x^4-91x^2+169 = (a^2-kab+b^2)(a^2+kab+b^2)49x491x2+169=(a2kab+b2)(a2+kab+b2)

color(white)(49x^4-91x^2+169) = (7x^2-sqrt(3*7*13)x+13)(7x^2+sqrt(3*7*13)x+13)49x491x2+169=(7x23713x+13)(7x2+3713x+13)

color(white)(49x^4-91x^2+169) = (7x^2-sqrt(273)x+13)(7x^2+sqrt(273)x+13)49x491x2+169=(7x2273x+13)(7x2+273x+13)

Putting it all together:

49x^6-140x^4+260x^2-16949x6140x4+260x2169

=(x-1)(x+1)(7x^2-sqrt(273)x+13)(7x^2+sqrt(273)x+13)=(x1)(x+1)(7x2273x+13)(7x2+273x+13)