How do you find the real solutions of the polynomial 14x^2+5=3x^4?

1 Answer
Jan 19, 2018

See below

Explanation:

14x^2 + 5 = 3x^4
0 = 3x^4 - 14x^2 - 5
0 = 3x^4 - 15x^2 + x^2 - 5
0 = 3x^2(x^2-5) + 1(x^2-5)
0 = (3x^2+1)(x^2-5)

0 = 3x^2 + 1
-1 = 3x^2
-1/3 = x^2
+-sqrt(-1/3) = x
These roots are not real.

x^2 - 5 = 0
x^2 = 5
x = +-sqrt5
These roots are real.