How do you find the second derivative of f(x)=ln (x^2+2)f(x)=ln(x2+2)?

1 Answer
Oct 11, 2016

f''(x) = ( 4 - 2x^2 ) / (x^2+2)^2

Explanation:

f(x)=ln(x^2+2)

Using the chain rule we have:
f'(x)=1/(x^2+2) *(2x)
:. f'(x)=(2x)/(x^2+2)

To find the second derivative we now need to use the product rule. Remember:
d/dx(u/v)=(v(du)/dx-u(dv)/dx)/v^2 ; so

f''(x) = ( (x^2+2)(2) - (2x)(2x) ) / (x^2+2)^2
:. f''(x) = ( 2x^2+4 - 4x^2 ) / (x^2+2)^2
:. f''(x) = ( 4 - 2x^2 ) / (x^2+2)^2