How do you find the second derivative of f(x) = x/(1-ln(x-1)) ?

1 Answer
Oct 10, 2017

f'(x)={2x-1-(x-1)ln(x-1)}/[(x-1){1-ln(x-1)}^2].

Explanation:

Let us write,

f(x)=g(x)/(h(x))," where, "g(x)=x, and, h(x)=1-ln(x-1).

Using the Quotient Rule for Diffn., we have,

f'(x)={h(x)g'(x)-g(x)h'(x)}/((h(x))^2.

Now, h(x)=1-ln(x-1) rArr h'(x)=0-1/(x-1)*d/dx(x-1)

:. h'(x)=-1/(x-1).

Also, g(x)=x rArr g'(x)=1.

Utilising these, we get,

f'(x)={(1-ln(x-1))*1-x(-1/(x-1))}/(1-ln(x-1))^2, i.e.,

f'(x)={1-ln(x-1)+x/(x-1)}/{1-ln(x-1)}^2, or,

f'(x)={2x-1-(x-1)ln(x-1)}/[(x-1){1-ln(x-1)}^2].