How do you find the second derivative of f(x)=x^2 lnx ?
2 Answers
Jun 1, 2018
Explanation:
By the product rule we get
simplifying
simplifying we get
Jun 1, 2018
Explanation:
"differentiate using the "color(blue)"product rule"
"given "f(x)=g(x)h(x)" then"
f'(x)=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"
g(x)=x^2rArrg'(x)=2x
h(x)=lnxrArrh'(x)=1/x
f'(x)=x^2. 1/x+2xlnx=x+2xlnx
"differentiate "2xlnx" using the "color(blue)"product rule"
g(x)=2xrArrg'(x)=2
h(x)=lnxrArrh'(x)=1/x
d/dx(2xlnx)=2x . 1/x+2lnx=2+2lnx
f''(x)=1+2+2lnx=3+2lnx