How do you find the second derivative of f(x)=x^2 lnx ?

2 Answers
Jun 1, 2018

f''(x)=2ln(x)+3

Explanation:

By the product rule we get
f'(x)=2xln(x)+x^2*17x
simplifying
f'(x)=2xln(x)+x
f''(x)=2ln(x)+2x*1/x+1
simplifying we get
f''(x)=2ln(x)+3

Jun 1, 2018

f''(x)=3+2lnx

Explanation:

"differentiate using the "color(blue)"product rule"

"given "f(x)=g(x)h(x)" then"

f'(x)=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"

g(x)=x^2rArrg'(x)=2x

h(x)=lnxrArrh'(x)=1/x

f'(x)=x^2. 1/x+2xlnx=x+2xlnx

"differentiate "2xlnx" using the "color(blue)"product rule"

g(x)=2xrArrg'(x)=2

h(x)=lnxrArrh'(x)=1/x

d/dx(2xlnx)=2x . 1/x+2lnx=2+2lnx

f''(x)=1+2+2lnx=3+2lnx