How do you find the second derivative of h(x)=ln(2x^2+1) ?

1 Answer
Jul 17, 2016

=(4-8x^2)/((2x^2+1)^2)

Explanation:

We use the chain rule to compute the derivative.

(dh)/(dx) = (dh)/(du)(du)/(dx)

1/(2x^2+1)*4x = (4x)/(2x^2+1)

Now we need to use the quotient rule.

(d^2h)/(dx^2) = (4(2x^2+1) - 16x^2)/((2x^2+1)^2)

=(4-8x^2)/((2x^2+1)^2)