How do you find the second derivative of ln^2 (x)?

1 Answer
Jul 11, 2016

:. (d^2y)/(dx^2)={2(1-lnx)}/x^2=ln{(e/x)^(2/x^2)}.

Explanation:

Let y=ln^2(x)=(lnx)^2.

:. dy/dx=2lnx*d/dx(lnx).......[Chain Rule].....=(2lnx)/x.

:. (d^2y)/(dx^2)=d/dx{dy/dx}........................[Defn.]
=d/dx{(2lnx)/x}
=2[{x*d/dx(lnx)-(lnx)*d/dx(x)}/x^2]..........[Quotient Rule]
=2[{x*1/x-(lnx)(1)}/x^2]
={2(1-lnx)}/x^2
=(2/x^2)(lne-lnx)
=(2/x^2)*ln(e/x)
=ln{(e/x)^(2/x^2)}

Maths. is amazing, enjoy it!