How do you find the second derivative of ln(X^(1/2))ln(X12)?

1 Answer
Sep 8, 2017

-1/2*x^(-2), or, -1/(2x^2).12x2,or,12x2.

Explanation:

Let, f(x)=ln(x^(1/2)).f(x)=ln(x12).

Using the Rule : ln(x^m)=mlnx,ln(xm)=mlnx, we find,

f(x)=1/2*lnx.f(x)=12lnx.

Now, for a constant k, {k*F(x)}'=k*F'(x),

:. f'(x)=1/2{lnx}'=1/2*1/x=1/2*x^(-1).

Recall that, f''(x)={f'(x)}'.

f''(x)={1/2*x^(-1)}'=1/2{x^(-1)}'.

But, {x^n}'=n*x^(n-1),

:. f''(x)=1/2*(-1*x^(-1-1))=-1/2*x^(-2), or, -1/(2x^2).#