How do you find the second derivative of ln(x^2+1) ?

1 Answer
Oct 18, 2016

(d^2y)/dx^2=(2-2x^2)/(x^2+1)^2

Explanation:

let y=ln(x^2+1)
this is a chain differentiation of ln(u(x))
dy/dx=(u'(x))/(u(x))
So dy/dx=(2x)/(x^2+1)
tHen we use (u/v)'=(u'v-uv')/v^2
(d^2y)/dx^2=(2(x^2+1)-2x*2x)/(x^2+1)^2=(2x^2+2-4x^2)/(x^2+1)^2=(2-2x^2)/(x^2+1)^2