How do you find the second derivative of ln(x^2+10) ?

1 Answer
Nov 21, 2016

(d^2y)/(dx^2) = (2(10 - x^2))/(x^2 + 10)^2

Explanation:

We find the first derivative , and then differentiate again.

y = ln(x^2 + 10)

e^y = x^2 + 10

e^y(dy/dx) = 2x

dy/dx= ( 2x)/(e^(y)

dy/dx= (2x)/(e^ln(x^2 + 10)

dy/dx = (2x)/(x^2 + 10)

(d^2y)/(dx^2) = (2(x^2 + 10) - 2x(2x))/(x^2 + 10)^2

(d^2y)/(dx^2) = (2x^2 + 20 - 4x^2)/(x^2 + 10)^2

(d^2y)/(dx^2) = (2(10 - x^2))/(x^2 + 10)^2

Hopefully this helps!