How do you find the second derivative of ln(x^2+5x) ?

3 Answers
Sep 25, 2016

-(2x^2+10x+25)/(x^2+5x)^2

Explanation:

First, we need to know the derivative of ln(x).

d/dxln(x)=1/x

So, since we have a function embedded within ln(x), we must use the chain rule to differentiate it.

d/dxln(f(x))=1/f(x)*f'(x)

Thus:

d/dxln(x^2+5x)=1/(x^2+5x)*d/dx(x^2+5x)

=(2x+5)/(x^2+5x)

Now, to differentiate this again, use the quotient rule:

d/dxf(x)/(g(x))=(f'(x)g(x)-f(x)g'(x))/(g(x))^2

Thus:

d^2/dx^2ln(x^2+5x)=((x^2+5x)d/dx(2x+5)-(2x+5)d/dx(x^2+5x))/(x^2+5x)^2

=((x^2+5x)(2)-(2x+5)(2x+5))/(x^2+5x)^2

=(2x^2+10x-(4x^2+20x+25))/(x^2+5x)^2

=(-2x^2-10x-25)/(x^2+5x)^2

Sep 25, 2016

-(2x^2+10x+25)/(x^2+5x)^2

Explanation:

First derivative: (1/(x^2+5x))*(2x+5)=(2x+5)/(x^2+5x)

Second derivftive: (2(x^2+5x)-(2x+5)(2x+5))/(x^2+5x)^2

=-(2x^2+10x+25)/(x^2+5x)^2

Sep 25, 2016

(-2x^2-10x-25)/(x^2+5x)^2

Explanation:

To find the first derivative use the color(blue)"chain rule"

color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))..... (A)

let u=x^2+5xrArr(du)/(dx)=2x+5

then y=lnurArr(dy)/(du)=1/u

substitute these values into (A) changing u back to x.

rArrdy/dx=1/uxx(2x+5)=(2x+5)/(x^2+5x)
color(blue)"-----------------------------------------------------"

To find the second derivative use the color(blue)"quotient rule"

If f(x)=(g(x))/(h(x))" then"

color(red)(bar(ul(|color(white)(a/a)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(a/a)|)))

here g(x)=2x+5rArrg'(x)=2

and h(x)=x^2+5xrArrh'(x)=2x+5

f'(x)=((x^2+5x).2-(2x+5)(2x+5))/(x^2+5x)^2

simplifying the numerator.

=(2x^2+10x-4x^2-20x-25)/(x^2+5x)^2

The second derivative is therefore.

=(-2x^2-10x-25)/(x^2+5x)^2=(-(2x^2+10x+25))/(x^2+5x)^2