How do you find the second derivative of ln(x^2+5x) ?
3 Answers
Explanation:
First, we need to know the derivative of
d/dxln(x)=1/x
So, since we have a function embedded within
d/dxln(f(x))=1/f(x)*f'(x)
Thus:
d/dxln(x^2+5x)=1/(x^2+5x)*d/dx(x^2+5x)
=(2x+5)/(x^2+5x)
Now, to differentiate this again, use the quotient rule:
d/dxf(x)/(g(x))=(f'(x)g(x)-f(x)g'(x))/(g(x))^2
Thus:
d^2/dx^2ln(x^2+5x)=((x^2+5x)d/dx(2x+5)-(2x+5)d/dx(x^2+5x))/(x^2+5x)^2
=((x^2+5x)(2)-(2x+5)(2x+5))/(x^2+5x)^2
=(2x^2+10x-(4x^2+20x+25))/(x^2+5x)^2
=(-2x^2-10x-25)/(x^2+5x)^2
Explanation:
First derivative:
Second derivftive:
Explanation:
To find the first derivative use the
color(blue)"chain rule"
color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))..... (A) let
u=x^2+5xrArr(du)/(dx)=2x+5 then
y=lnurArr(dy)/(du)=1/u substitute these values into (A) changing u back to x.
rArrdy/dx=1/uxx(2x+5)=(2x+5)/(x^2+5x)
color(blue)"-----------------------------------------------------" To find the second derivative use the
color(blue)"quotient rule" If
f(x)=(g(x))/(h(x))" then"
color(red)(bar(ul(|color(white)(a/a)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(a/a)|))) here
g(x)=2x+5rArrg'(x)=2 and
h(x)=x^2+5xrArrh'(x)=2x+5
f'(x)=((x^2+5x).2-(2x+5)(2x+5))/(x^2+5x)^2 simplifying the numerator.
=(2x^2+10x-4x^2-20x-25)/(x^2+5x)^2 The second derivative is therefore.
=(-2x^2-10x-25)/(x^2+5x)^2=(-(2x^2+10x+25))/(x^2+5x)^2