How do you find the second derivative of ln(x/(x^2+1))ln(xx2+1) ?

1 Answer
Nov 1, 2016

y=ln(x/(x^2+1))y=ln(xx2+1)

y=ln(x)-ln(x^2+1)y=ln(x)ln(x2+1)

*See logarithmic rules .

Now, if g(x)=ln(h(x))g(x)=ln(h(x)), g'(x)=(h'(x))/(h(x)), which means that...

(dy)/(dx)=x^-1-(2x)/(x^2+1)

So far so good... Now from here, what we get is...

(d^2y)/(dx^2)=-x^(-2)-((x^2+1)*2-(2x)^2)/((x^2+1)^2)

Thanks to the quotient rule.

If we simplify the above we get...

(d^2y)/(dx^2)=-1/(x^2)-(2x^2+2-4x^2)/(x^2+1)^2

(d^2y)/(dx^2)=-1/(x^2)-(-2x^2+2)/(x^2+1)^2

(d^2y)/(dx^2)=-1/(x^2)-(-2(x^2-1))/(x^2+1)^2

(d^2y)/(dx^2)=-1/(x^2)+(2(x^2-1))/(x^2+1)^2