#"the equation of a parabola in "color(blue)"vertex form"# is.
#•color(white)(x)y=a(x-h)^2+k#
#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a multiplier"#
#"to obtain this form "color(blue)"complete the square"#
#y=-3(x^2-7/3x-4/3)#
#color(white)(y)=-3(x^2+2(-7/6)x+49/36-49/36-4/3)#
#color(white)(y)=-3(x-7/6)^2-3(-49/36-4/3)#
#color(white)(y)=-3(x-7/6)^2+97/12larrcolor(blue)"in vertex form"#
#color(magenta)"vertex "=(7/6,97/12)#
#"for y-intercept let x = 0"#
#y=4larrcolor(red)"y-intercept"#
#"for x-intercepts let y = 0"#
#-3(x-7/6)^2+97/12=0#
#-3(x-7/6)^2=-97/12#
#(x-7/6)^2=97/36#
#color(blue)"take the square root of both sides"#
#x-7/6=+-97/36larrcolor(blue)"note plus or minus"#
#"add "7/6" to both sides"#
#x=7/6+-sqrt97/6larrcolor(red)"exact values"#
#x~~-0.47,x~~2.81" to 2 dec. places"#