How do you find the vertex and intercepts for #f(x)=x^2-3x+4#?
1 Answer
Jun 29, 2017
Explanation:
#"the equation of a parabola in standard form " #
#• y=ax^2+bx+c" has the x-coordinate of the vertex"#
#x_(color(red)"vertex")=-b/(2a)#
#f(x)=x^2-3x+4" is in standard form"#
#"with " a=1,b=-3,c=4#
#rArrx_(color(red)"vertex")=-(-3)/2=3/2#
#"substitute this value into f(x) for y-coordinate"#
#rArry_(color(red)"vertex")=(3/2)^2-3(3/2)+4=7/4#
#rArrcolor(magenta)"vertex "=(3/2,7/4)#
#color(blue)"Intercepts"#
#• " let x = 0 for y-intercept"#
#• " let y = 0 for x-intercepts"#
#x=0toy=4larrcolor(red)" y-intercept"#
#y=0tox^2-3x+4=0#
#"check the value of the "color(blue)"discriminant"#
#Delta=b^2-4ac=(-3)^2-16=-7#
#"since " Delta<0" roots are not real"#
#rArr" there are no x-intercepts"#
graph{x^2-3x+4 [-10, 10, -5, 5]}