How do you find the vertex and intercepts for x = –2(y– 3)^2 - 2?

1 Answer
Mar 29, 2016

Vertex at (-2,3)

x_("intercept")=-20

Explanation:

Given x=-2(ycolor(blue)(-3))^2color(magenta)(-2)

color(blue)("Solving for vertex")

As in completing the square for x we have the same scenario but this time in y

"y-vertex" = (-1)xxcolor(blue)(-3) = +3

"x-vertex" = color(magenta)(-2)

=>"Vertex"->(x,y)->(-2,3)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Solving for x intercept")

x intercept @ y=0 giving

x=-2(y-3)^2-2 -> x=-2(9)-2 = -20

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Solving for y intercept")

The determinant for y=(-b+-sqrt(b^2-4ac))/(2a) Must be positive

x=-2(y-3)^2-2" "->" "x=-2y^2+12y-20

Thus the determinant is: sqrt(12^2-4(-2)(-20)) = sqrt(-16 )

Thus there are only Complex number roots for x=0

color(magenta)(y_("intercept") " Does not exist")
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tony B