How do you find the vertex and intercepts for #y=2(x+2)^2-9#?

1 Answer
May 8, 2017

see explanation.

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.

#y=2(x+2)^2-9" is in this form"#

#"with " h=-2" and " k=-9#

#rArrcolor(magenta)"vertex "=(-2,-9)#

#color(blue)"to find intercepts"#

#• " let x = 0, in equation, for y-intercept"#

#• " let y = 0, in equation, for x-intercepts"#

#x=0toy=2(2)^2-9=-1larrcolor(red)" y-intercept"#

#y=0to2(x+2)^2-9=0#

#rArr(x+2)^2=9/2#

#color(blue)"taking the square root of both sides"#

#sqrt((x+2)^2)=color(red)(+-)sqrt(9/2)larr" note plus or minus"#

#rArrx+2=+-3/sqrt2#

#rArrx=-2+-(3sqrt2)/2#

#x=-2+(3sqrt2)/2~~0.12larrcolor(red)" x-intercept"#

#x=-2-(3sqrt2)/2~~-4.12larrcolor(red)" x-intercept"#
graph{2(x+2)^2-9 [-28.87, 28.86, -14.43, 14.44]}