How do you find the vertex and intercepts for y=2x^2+3x-8?

1 Answer
May 30, 2018

Vertex (-3/4, -73/8)
Y-Intercept (0,-8)
x-intercept ((sqrt73-3)/4,0); ((-sqrt73-3)/4,0)

Explanation:

Given -

y=2x^2+3x-8

x=(-b)/(2a)=(-3)/(2xx2)=(-3)/4=-3/4

At x=-3/4; y=2(-3/4)^2+3(-3/4)-8

y=2(-9/16)-9/4-8

y=18/16-9/4-8=(18-36-128)/16=-146/16=-73/8

Vertex

(-3/4, -73/8)

Intercept

Y-Intercept

At x=0; y=2(0^2)+3(0)-8=-8

(0,-8)

X-intercept

At y=0;0=2x^2+3x-8

2x^2+3x-8=0

2x^2+3x=8

x^2+3/2x=4

x^2+3/2x+9/16=4+9/16=(64+9)/16=73/16

(x+3/4)^2=+-sqrt(73/16)

x+3/4=+-sqrt(73/16)=+-sqrt73/4

x=sqrt73/4-3/4=(sqrt73-3)/4

x=-sqrt73/4-3/4=(-sqrt73-3)/4

x-intercept ((sqrt73-3)/4,0); ((-sqrt73-3)/4,0)