How do you find the vertex and intercepts for #y=2x^2+3x-8#?
1 Answer
May 30, 2018
Vertex
Y-Intercept
x-intercept
Explanation:
Given -
#y=2x^2+3x-8#
#x=(-b)/(2a)=(-3)/(2xx2)=(-3)/4=-3/4#
At
#y=2(-9/16)-9/4-8#
#y=18/16-9/4-8=(18-36-128)/16=-146/16=-73/8#
Vertex
#(-3/4, -73/8)#
Intercept
Y-Intercept
At
#(0,-8)#
X-intercept
At
#2x^2+3x-8=0#
#2x^2+3x=8#
#x^2+3/2x=4#
#x^2+3/2x+9/16=4+9/16=(64+9)/16=73/16#
#(x+3/4)^2=+-sqrt(73/16)#
#x+3/4=+-sqrt(73/16)=+-sqrt73/4#
#x=sqrt73/4-3/4=(sqrt73-3)/4#
#x=-sqrt73/4-3/4=(-sqrt73-3)/4#
x-intercept