How do you find the vertex and intercepts for #y =-3x^2 + 12x – 7#?

1 Answer
May 4, 2017

#"Vertex "->(x,y)=(+2,5)#

#y_("intercept")=-7#

#x_("intercepts")=2+-sqrt(5/3)" "# Exact values

Approximate values #x_("intercepts")# to 3 decimal places

#x~~+3.291#
#x~~-0.709#

Explanation:

See https://socratic.org/s/aEpUuXgB for a step by step example of method.

Given the standardised form of #y=ax^2+bx+c#

we have the vertex version of the same equation:

#y=a(x+b/(2a))^2+k+c#

Where #k=(-1)xxa(b/(2a))^2#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine vertex")#

Write as #y=-3(x+12/(-6))^2+[(-3)xx(12/(-6))^2]+7#

#y=-3(x-2)^2+5#

#color(blue)("Vertex "->(x,y)=(+2,5))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine y-intercepts")#

Consider #y=-3x^2+12x-7#

#color(blue)("y-intercept "->y=-7)#

This occurs at #x=0#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine x-intercepts")#

Note that we have #y=-3x^2+.....#

The coefficient of #x^2# is negative so the graph is of general shape #nn#

The vertex is above the x-axis so as of form #nn# there are x-intercepts

Set #y=0# giving:

#y=-3(x-2)^2+5" "->" "0=-3(x-2)^2+5#

Subtract 5 from both sides

#" "-5=-3(x-2)^2#

Divide both sides by -3

#" "+5/3=(x-2)^2#

Square root both sides

#" "+-sqrt(5/3)=x-2#

add 2 to both sides

#" "x=2+-sqrt(5/3)" "# Exact values

Approximate values to 3 decimal places

#x~~+3.291#
#x~~-0.709#

Tony B