Given: y=x^2+2x-1 ....................................(1)
color(blue)("To determine the vertex.")
This is already in the form of y=a(x^2+b/a x-1) because a=1
x_("vertex")=(-1/2)xx b/a
This is a variation on 'Vertex Form Equation'
'::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
In your case:
color(blue)(x_("vertex")=(-1/2)xx(+2)=-1)......................(2)
Substitute (2) into equation (1)
y_("vertex")=(-1)^2+2(-1)-1
color(blue)(y_("vertex")=+1-2-1=-2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("To determine "y_("intercept")
The graph crosses the y-axis when x=0
So y=x^2+2x-1 -> y_("intercept")=(0)^2+2(0)-1
color(blue)(y_("intercept")=-1
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("To determine "x_("intercepts")
The graph crosses the x-axis when y=0
So y=0=x^2+2x-1
We need the form y=0=(x+?)(x+?) to find any integer factors
The only factor of 1 is 1 and to get -1 we need (-1)xx(+1)
which is fine until you try and get +2x. It fails then! So it means that the factors are not integer values. In which case we need to use the formula.
Using: color(white)(......)y=ax^2+bx+c
Where color(white)(...)x=(-b+-sqrt(b^2-4ac))/(2a)
a=1 ; b=+2 ; c=-1
x=(-(+2)+-sqrt((+2)^2-4(+1)(-1)))/(2(1))
x=(-2+-sqrt(4+4))/2
but sqrt(8)=sqrt(2xx2^2)=2sqrt(2)
x=(-2+-2sqrt(2))/2
x~~0.414" or "x~~-2.414 to 3 decimal places