How do you find the vertex and intercepts for #y=-x^2-2x+3#?

2 Answers
Jun 22, 2017

Vertex (-1, 4)
x-intercepts: x = 1 and x = -3

Explanation:

x-coordinate of vertex:
#x = -b/(2a) = 2/-2 = - 1#
y-coordinate of vertex:
y(-1) = - 1 + 2 + 3 = 4
Vertex (-1, 4).
To find y-intercept, make x = 0 --> y = 3
To find x-intercepts, make y = 0, and solve:
#- x^2 - 2x + 3 = 0#
Since a + b + c = 0, use shortcut.
The 2 real roots (x-intercepts) are:
x = 1 and #x = c/a = 3/(-1) = - 3#
graph{- x^2 - 2x + 3 [-10, 10, -5, 5]}

Jun 22, 2017

The vertex is #(-1,4)#, and is the maximum point of the parabola.

The x-intercepts are #(1,0)# and #(-3,0)#.

The y-intercept is #(0,3)#.

Explanation:

#y=-x^2-2x+3# is the equation of a parabola in standard form: #y=ax^2+bx+c#, where #a=-1#, #b=-2#, and #c=3#.

The vertex of a parabola is the minimum or maximum point, #(x,y)#, of the parabola.

To determine the vertex of a parabola from the standard equation, use the following formulas:

#x=(-b)/(2a)#

#y=f(h)#.

Vertex of Parabola

#x=(-(-2))/(2*-1)#

#x=2/(-2)#

#x=-1#

To determine #y#, substitute the value for #x# into the standard equation and solve.

#y=f(h)=-(-1)^2-2(-1)+3#

#y=f(h)=-1+2+3#

#y=f(h)=4#

The vertex is #(-1,4)#, and is the maximum point of the parabola.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#"x-intercepts"#

The x-intercepts are the values for #x# when #y=0#. Substitute #0# for #y#.

#-x^2-2x+3=0#

Find two numbers that when added equal #-2# and when multiplied equal #3#. #1# and #-3# meet the criteria.

#-(x-1)(x+3)=0#

Multiply both sides by #-1#.

#(x-1)(x+3)=0#

Solutions for #x#.

#(x-1)=0#

#x=1#

#(x+3)=0#

#x=-3#

The x-intercepts are #(1,0)# and #(-3,0)#.

Determine the y-intercept by substituting #0# for #x# in the standard equation.

#y=-1(0)-2(0)+3#

The y-intercept is #(0,3)#.

graph{y=-x^2-2x+3 [-10, 10, -5, 5]}