How do you find the vertex and the intercepts for -3x^2 - 3x + 1?
1 Answer
Apr 17, 2016
Vertex
Y-intercept
(1, 0)
X-Intercepts
((3+sqrt(21))/(-6), 0)
((3-sqrt(21))/(-6), 0)
Explanation:
Given -
y= -3x^2-3x+1
Find the vertex.
x- co-ordinate of the vetex
x=(-(-b))/(2a)=(-(-3))/(2 xx (-3))=3/(-6)=(-1)/3
Y-co-ordinate
y=-3((-1)/3)-3((-1)/3)+1
y=-3(1/9)+3/3+1
y=-1/3+1+1
y=5/3
Vertex
Find Intercepts
Y- intercept at
y=-3(0)-3(0)+1
(1, 0)
X Intercept, at
-3x^2-3x+1=0
x=((-b)+-sqrt((-b)^2-(4ac)))/(2a)
x=((-(-3))+-sqrt((-3)^2-(4 xx(-3)xx1)))/(2 xx(-3))
x=(3+-sqrt(9-(-12)))/(-6)
x=(3+-sqrt(21))/(-6)
((3+sqrt(21))/(-6), 0)
((3-sqrt(21))/(-6), 0)