How do you find the vertex and the intercepts for -3x^2 - 3x + 1?

1 Answer
Apr 17, 2016

Vertex ((-1)/3, 5/3)

Y-intercept

(1, 0)

X-Intercepts

((3+sqrt(21))/(-6), 0)
((3-sqrt(21))/(-6), 0)

Explanation:

Given -

y= -3x^2-3x+1

Find the vertex.

x- co-ordinate of the vetex

x=(-(-b))/(2a)=(-(-3))/(2 xx (-3))=3/(-6)=(-1)/3

Y-co-ordinate

y=-3((-1)/3)-3((-1)/3)+1
y=-3(1/9)+3/3+1
y=-1/3+1+1
y=5/3

Vertex ((-1)/3, 5/3)

Find Intercepts

Y- intercept at x=0

y=-3(0)-3(0)+1

(1, 0)

X Intercept, at (y=0)

-3x^2-3x+1=0

x=((-b)+-sqrt((-b)^2-(4ac)))/(2a)
x=((-(-3))+-sqrt((-3)^2-(4 xx(-3)xx1)))/(2 xx(-3))
x=(3+-sqrt(9-(-12)))/(-6)
x=(3+-sqrt(21))/(-6)
((3+sqrt(21))/(-6), 0)
((3-sqrt(21))/(-6), 0)