How do you find the vertex and the intercepts for # 4x^2 - 3x - 2 = 0#?

1 Answer
Mar 21, 2016

#color(blue)("at "y=0 ....x=(3+sqrt(23))/4 and x=(3-sqrt(23))/4)#

#color(blue)("vertex"->(x,y)->(3/8,-41/16))#

#color(blue)(y_("intercept")=-2#

Explanation:

There is a really cool way to find the axis of symmetry and hence #x_("vertex")#. Some you can do in your head!

Write the given equation as:#" "y=4(x^2-3/4x)-2#

Now consider the #-3/4# from #-3/4x#

Apply:#" " (-1/2)xx(-3/4)=+ 3/8#

#color(blue)(x_("vertex")=3/8)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Determin "y_("vertex"))#
Substitute #x=3/8# in the original equation

#y_("vertex")= 4(3/8)^2-3(3/8)-2#

#y_("vertex")= 9/16-9/8-2 = -2 9/16 ->-41/16#

#color(blue)(y_("vertex")= -2 9/16 ->-41/16)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine "y_("intercept")#

The graph will cross the y-axis at x=0 so by substitution.

#y=4(0)^2-3(0)-2#

#y=0-0-2#

#color(blue)(y_("intercept")=-2#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Determine "x_("intercept"))#

There are not whole number factors for this equation so we are forced to use the equation method.

#y=ax^2+bx+c#

Where#" "x=(-b+-sqrt(b^2-4ac))/(2a)#

and:# a=4; b=-3; c=-2 " " #giving

#x=(+3+-sqrt((-3)^2-4(4)(-2)))/(2(4))#

#x=(3+-sqrt(23))/4#

23 is a prime number so you can not do any more with it. So if you whish have a precise solution there is no choice other than to state:

#color(blue)("at "y=0 ....x=(3+sqrt(23))/4 and x=(3-sqrt(23))/4)#

You could work out the decimals if you wish but these will not be precise!

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Tony B