How do you find the vertex and the intercepts for f(x)=1-12x-3x^2?

1 Answer
Apr 5, 2016

y_("intercept")=+1
x_("intercepts") = +0.0817" and " -4.0827 to 4 decimal places

Vertex->(x,y)-> (-2,+13)

Explanation:

I much prefer the format:

f(x)=-3x^3-12x+1
'~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Straight off, the "y_("intercept")" is the constant of +1")

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Write as y=-3(x^3+12/3 x) +1

color(blue)(x_("vertex") = (-1/2)xx(+12/3) = -2)

color(brown)("By substitution of "x)
color(blue)(y_("vertex") =-3(-2)^2-12(-2)+1 = +13)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine x intercepts")
This equation does not have whole number x intercepts

Set 0=-3x^2-12x+1

Std form -> y=ax^2+bx+c

Where" "x=(-b+-sqrt(b^2-4ac))/(2a)

=> x= (+12+-sqrt((-12)^2-4(-3)(1)))/(2(-3))

x= (12+-sqrt(156))/(-6)

x= -2+-sqrt(2^2xx39)/(-6)

x= -2+-sqrt(39)/(-3)
'~~~~~~~~~~~~~~~~~~~~~~~
Consider: color(blue)(x= -2-sqrt(39)/(-3) = +0.0817) to 4 decimal places

Consider: color(blue)(x= -2+sqrt(39)/(-3) = -4.0827) to 4 decimal places

Tony B