How do you find the vertex and the intercepts for f(x)=-2x^2+2x-3?

1 Answer
Apr 26, 2016

color(blue)(y_("intercept")=-3
color(blue)("Vertex"->(x,y)->(1/2,-5/2))
color(red)("As the graph is of shape "nn" and the vertex")
color(red)("is below the x-axis there are no x-intercepts")

Explanation:

Given:" "y=-2x^2+2x-3......................(1)

Standard form:" "y=ax^2+bx+c
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine y intercept")

color(blue)(y_("intercept")=c=-3

(note: y intercept is at x=0 so -2x^2=0" and "2x=0" leaving " y=-3
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Determine x-vertex")

The coefficient of x^2 is negative so the graph is of general shape nn Thus the vertex is a maximum.

Write " "y=-2x^2+2x-3" as "y=-2(x^2color(red)( -x)) -3

Using the coefficient of color(red)(-x -> -1)

Apply: color(blue)(x_("vertex")=(-1/2)xx(color(red)(-1))=+1/2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine y-vertex")

Substitute x=1/2 into equation (1) giving

y_("vertex")=-2(1/2)^2+2(1/2)-3

color(blue)(y_("vertex")=-2/4+2/2-3 = -5/2
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Vertex"->(x,y)->(1/2,-5/2))
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(red)("As the graph is of shape "nn" and the vertex")
color(red)("is below the x-axis there are no x-intercepts")