How do you find the vertex and the intercepts for f(x)=-2x^2+2x+4?

1 Answer
Nov 25, 2017

Vertex (1/2, 9/2)
Y- intercept (0, 4)
X - intercept (-1,0)
X - intercept (2,0)

Explanation:

Given -

f(x)=-2x^2+2x+4

y=-2x^2+2x+4

Vertex

x=(-b)/(2a)=(-2)/(2xx(-2))=(-2)/(-4)=1/2

At x=1/2

y=-2xx(1/2)^2+(2xx1/2)+4

y=-2xx(1/4)+1+4

y=--1/2+1+4=(-1+2+8)/2=9/2

Vertex (1/2, 9/2)

Y- intercept
At x=0

y=-2(0)^2+2(0)+4

y=4

Y- intercept (0, 4)

X- intercept

At y=0

-2x^2+2x+4=0

-2x^2+4x-2x+4=0

-2x(x-2)-2(x-2)=0

(-2x-2)(x-2)=0

-2x-2=0
x=(2)/(-2)=-1

X - intercept (-1,0)

x-2=0

x=2

X - intercept (2,0)