How do you find the vertex and the intercepts for #f(x) = 3 x^2 − 14 x − 24#?

1 Answer
Aug 28, 2016

Vertex #(14/6, -121/3)#

Y - intercept #(0, -24)#
One of the x-intercept #(6,0)#

Another x-intercept #(-4/3, 0)#

Explanation:

Given -

#y=3x^2-14x-24#

Find the Vertex

x-coordinate of the vertex

#x=(-b)/(2a)=(-(-14))/(2xx3)=14/6#

y-coordinate of the vertex

#y=3(14/6)^2-14(14/6)-24=-121/3#

Vertex #(14/6, -121/3)#

Y - intercept

At #x=0: y=3(0)^2 -14(0)-24=-24#

#(0, -24)#

X - intercepts

At #y=0#

#3x^2-14x-24=0#

#x=((-b)+-sqrt(b^2-(4ac)))/(2a)=(-(-14)+-sqrt((-14)^2-(4xx3xx(-24))))/(2xx3)#

#x=(b+-sqrt(196 -(-288)))/6=(14+-22)/6#

#x=(14+22)/6=6#

One of the x-intercept #(6,0)#

#x=(14-22)/6=(-8)/6=(-4)/3#

Another x-intercept #(-4/3, 0)#

Look at the graph