How do you find the vertex and the intercepts for f(x)= -x^2-3x-6 ?

1 Answer
Oct 4, 2017

"see explanation"

Explanation:

"given the equation of a parabola in standard form "

•color(white)(x)y=ax^2+bx+c color(white)(x);a!=0

"then the x-coordinate of the vertex is"

•color(white)(x)x_(color(red)"vertex")=-b/(2a)

f(x)=-x^2-3x-6" is in standard form"

"with "a=-1,b=-3,c=-6

rArrx_(color(red)"vertex")=-(-3)/(-2)=-3/2

"substitute this value into f(x) for y-coordinate"

rArry_(color(red)"vertex")=-(-3/2)^2-3(-3/2)-6=-15/4

rArrcolor(magenta)"vertex"=(-3/2,-15/4)

color(blue)"Intercepts"

• " let x = 0, in equation for y-intercept"

• " let y = 0, in equation for x-intercepts"

x=0toy=-6larrcolor(red)" y-intercept"

y=0to-x^2-3x-6=0

"checking the value of the "color(blue)"discriminant"

Delta=b^2-4ac=(-3)^2-(4xx-1xx-6)=-15

"since "Delta<0" then no real solutions"

rArrf(x)" does not intersect with the x-axis"
graph{-x^2-3x-6 [-10, 10, -5, 5]}