How do you find the vertex and the intercepts for f(x) = -x^2 +4x +4f(x)=x2+4x+4?

1 Answer
Aug 27, 2017

Vertex: (2,8)(2,8)

X-intercepts: (2(1+sqrt2),0),(2(1+2),0), (2(1-sqrt2),0)(2(12),0)

Approximate intercepts: (-0.828,0),(0.828,0),(4.83,0)(4.83,0)

Y-Intercept: (0,4)(0,4)

Explanation:

Given:

f(x)=-x^2+4x+4f(x)=x2+4x+4 is a quadratic equation in standard form:

f(x)=ax^2+bx+cf(x)=ax2+bx+c,

where:

a=-1a=1, b=4b=4, and c=4c=4.

Vertex: maximum or minimum point of a parabola

The xx value of the vertex is the same as the axis of symmetry that divides the parabola into two equal halves.

x=(-b)/(2a)x=b2a

x=(-4)/(2*-1)x=421

x=(-4)/(-2)x=42 larr Two negatives make a positive.

x=2x=2

To determine the yy value of the vertex, substitute yy for f(x)f(x). Substitute 22 for xx and solve for yy.

y=-(2)^2+4(2)+4y=(2)2+4(2)+4

Simplify.

y=-4+8+4y=4+8+4

y=8y=8

The vertex is (2,8)(2,8).

Since a<0a<0, the vertex is the maximum point and the parabola opens downward.

X-Intercepts: value of xx when y=0y=0

Substitute 00 for f(x)f(x) and solve for xx using the quadratic formula.

0=-x^2+4x+40=x2+4x+4

Quadratic formula

x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

Plug in the known values.

x=(-4+-sqrt((4)^2-4*-1*4))/(2*-1)x=4±(4)241421

Simplify.

x=(-4+-sqrt(16+16))/(-2)x=4±16+162

Simplify 16+1616+16 to 3232.

x=(-4+-sqrt32)/(-2)x=4±322

Prime factorize 3232.

x=(-4+-sqrt((2xx2)xx(2xx2)xx2))/(-2)x=4±(2×2)×(2×2)×22

Simplify.

x=(-4+-2xx2sqrt2)/(-2)x=4±2×222

x=(-4+-4sqrt2)/(-2)x=4±422

Factor out the common 22.

x=(color(red)cancel(color(black)(-4))^2+-color(red)cancel(color(black)(4))^2sqrt2)/(color(red)cancel(color(black)(-2))^1

x=(2+-2sqrt2)

Solutions for x.

x=2+2sqrt2,2-2sqrt2

Simplify.

x=2(1+sqrt2),2(1-sqrt2)

x-intercepts: (2(1+sqrt2)),0), (2(1-sqrt2)),0)

Approximate intercepts: (-0.828,0),(4.83,0)

Y-Intercept: value of y when x=0.

Substitute 0 for x and solve for y.

y=-(0^2)+4(0)+4

y=4

y-intercept: (0,4)

Plot the points and sketch a parabola through the dots. Do not connect the dots.

graph{y=-x^2+4x+4 [-16.02, 16.02, -8.01, 8.01]}