How do you find the vertex and the intercepts for #f(x)= -x^2-6x-5#?
1 Answer
May 4, 2017
see explanation.
Explanation:
#"for the standard quadratic function " y=ax^2+bx+c#
#"the x-coordinate of the vertex " x_(color(red)"vertex")=-b/(2a)#
#"for the function " y=-x^2-6x-5#
#"then " a=-1,b=-6" and " c=-5#
#rArrx_(color(red)"vertex")=-(-6)/(-2)=-3#
#"substitute this value into the function and evaluate for y"#
#rArry_(color(red)"vertex")=-(-3)^2-6(-3)-5=4#
#rArrcolor(magenta)"vertex " =(-3,4)#
#color(blue)"to find intercepts"#
#• " let x=0, in function, for y-intercept"#
#• " let y=0, in function, for x-intercepts"#
#x=0toy=-5larrcolor(red)" y-intercept"#
#y=0to-x^2-6x-5=0#
#rArrx^2+6x+5=0larr" multiply through by - 1"#
#(x+5)(x+1)=0#
#rArrx=-5,x=-1larrcolor(red)" x-intercepts"#
graph{-x^2-6x-5 [-10, 10, -5, 5]}