How do you find the vertex and the intercepts for f(x)= -x^2-6x-5?

1 Answer
May 4, 2017

see explanation.

Explanation:

"for the standard quadratic function " y=ax^2+bx+c

"the x-coordinate of the vertex " x_(color(red)"vertex")=-b/(2a)

"for the function " y=-x^2-6x-5

"then " a=-1,b=-6" and " c=-5

rArrx_(color(red)"vertex")=-(-6)/(-2)=-3

"substitute this value into the function and evaluate for y"

rArry_(color(red)"vertex")=-(-3)^2-6(-3)-5=4

rArrcolor(magenta)"vertex " =(-3,4)

color(blue)"to find intercepts"

• " let x=0, in function, for y-intercept"

• " let y=0, in function, for x-intercepts"

x=0toy=-5larrcolor(red)" y-intercept"

y=0to-x^2-6x-5=0

rArrx^2+6x+5=0larr" multiply through by - 1"

(x+5)(x+1)=0

rArrx=-5,x=-1larrcolor(red)" x-intercepts"
graph{-x^2-6x-5 [-10, 10, -5, 5]}