How do you find the vertex and the intercepts for y=2x^2-12x?

1 Answer
Apr 27, 2016

color(blue)( y_("intercept")" is at y=0")

color(blue)(x_("intercepts")-> x=0; x=4)

color(blue)("Vertex"->(x,y)=(3,-18))" "->" and is a minimum"

Explanation:

Write as:" "y=2x^2-12x +0

color(blue)("The y intercept is at y=0")

y =0 at x=0

color(brown)("so one of the x intercepts is at x=0")
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
write as y=2(x^2-6x)

color(blue)(x_("vertex") = (-1/2)xx(-6) = +3)

color(brown)(y=2x^2-12xcolor(green)(" "->" "y_("vertex")=2(3)^2-12(3) =-18))

color(blue)(y_("vertex")=-18)

color(blue)("Vertex"->(x,y)=(3,-18))

color(brown)("As the coefficient of "x^2" is positive then the general shape of")color(brown)("the graph is " uu) color(blue)(" Thus the vertex is a Minimum")
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

x_("intercpt")->y=0

=> 0=2(x^2-6x)

Divide both sides by 2

=>0/2=2/2(x^2-6x)

But 0/2=0" and "2/2=1

=>0=(x^2-6x)

Factor out x

=>0=x(x-4)

For y=0 ; x=0" and/or "x=+4

color(blue)(x_("intercepts")-> x=0; x=4)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~