Write as:" "y=2x^2-12x +0
color(blue)("The y intercept is at y=0")
y =0 at x=0
color(brown)("so one of the x intercepts is at x=0")
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
write as y=2(x^2-6x)
color(blue)(x_("vertex") = (-1/2)xx(-6) = +3)
color(brown)(y=2x^2-12xcolor(green)(" "->" "y_("vertex")=2(3)^2-12(3) =-18))
color(blue)(y_("vertex")=-18)
color(blue)("Vertex"->(x,y)=(3,-18))
color(brown)("As the coefficient of "x^2" is positive then the general shape of")color(brown)("the graph is " uu) color(blue)(" Thus the vertex is a Minimum")
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
x_("intercpt")->y=0
=> 0=2(x^2-6x)
Divide both sides by 2
=>0/2=2/2(x^2-6x)
But 0/2=0" and "2/2=1
=>0=(x^2-6x)
Factor out x
=>0=x(x-4)
For y=0 ; x=0" and/or "x=+4
color(blue)(x_("intercepts")-> x=0; x=4)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~