How do you find the vertex and the intercepts for y= 3x^2 +12x-6y=3x2+12x6?

1 Answer
Jan 12, 2018

Vertex: (-2,-18)(2,18)
y-intercept: (0,-6)(0,6)
x-intercepts: (-2-sqrt(6),0)(26,0) and (-2+sqrt(6),0)(2+6,0)

Explanation:

Given
color(white)("XXX")y=3x^2+12x-6XXXy=3x2+12x6

This can be converted into vertex form as follows:
rArr y=3(x^2+4x-2)y=3(x2+4x2)

rArr y=3[x^2+4x-2]y=3[x2+4x2]

rArr y = 3[(x^2+4xcolor(blue)(+4))-2color(blue)(-4)]y=3[(x2+4x+4)24]

rArr y=3[(x+2)^2-6]y=3[(x+2)26]

rArr y= 3(x+2)^2-18y=3(x+2)218

rArr y= 3(x-color(red)(""(-2)))^2+color(blue)(""(-18))y=3(x(2))2+(18)

which is the vertex form with vertex at (color(red)(-2),color(blue)(-18))(2,18)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The y-intercept is the value of yy when x=color(magenta)0x=0.
Substituting color(magenta)00 for xx in the original equation
color(white)("XXX")y=3 * color(magenta)0^2+12 * color(magenta) 0 -6=-6XXXy=302+1206=6
So the y-intercept is at y=-6y=6 [or if you prefer at (0,-6)(0,6)]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The x-intercepts are the values of xx for points when y=0y=0

Using the form derived while determining the vertex form: y=3(x+2)^2-18y=3(x+2)218
with y=color(green)0y=0
color(white)("XXX")color(green)0=3(x+2)^2-18XXX0=3(x+2)218

color(white)("XXX")rArr color(green)0=(x+2)^2-6XXX0=(x+2)26

color(white)("XXX")rArr (x+2)^2=6XXX(x+2)2=6

color(white)("XXX")rArr x+2=+-sqrt(6)XXXx+2=±6

color(white)("XXX")rArr x=-2+-sqrt(6)XXXx=2±6

So the x-intercepts are at x=-2-sqrt(6)x=26 and x=-2+sqrt(6)x=2+6 [or if you prefer at (-2-sqrt(6),0)(26,0) and (-2+sqrt(6),0)(2+6,0)]