How do you find the vertex and the intercepts for y=x2+10x+22?

2 Answers

vertex is (-5,-3). It intersects with x-axis in two points (-5, -+sqrt3) & y-intercept 22.

Explanation:

We have, by completing square, y=x2+10x+253, i.e., y+3=(x+5)2. Hence vertex (-5,-3), etc.

Jun 7, 2016

Detailed solution using completing the square

Vertex (x,y)(5,3)

Exact values xintercepts=5±3

Approx values x=6.73 and x=3.27 to 2 decimal places

Explanation:

Given: y=x2+10x+22 ............................Equation (1)
,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Write as y=(x2+10x)+22+k

where k is a correction that neutralises introduced error by changing the equation form. k not yet known.

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Now we start to change thing so we need k. We find its value after all the changes have been made.

Move the power from x2 to outside the brackets

y=(x+10x)2+22+k

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Remove the x from 10x

y=(x+10)2+22+k
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Multiply the 10 by 12

y=(x+5)2+22+k ...............................Equation (2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~
Determine the value of k

The error comes from the 5 inside the bracket when that bracket is squared.

So 52+k=0 k=25

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The completed square equation

So equation (2) becomes

y=(x+5)23.............................Equation (3)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Reading directly from Equation (3) vertex

xvertex=(1)×5=5

yvertex=3

Vertex (x,y)(5,3)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Determine xIntercepts

Set y to 0 giving

0=(x+5)23

Add 3 to both sides

(x+5)2=+3

Square root both sides

x+5=±3

Subtract 5 from both sides

Exact values x=5±3

Approximate values x=6.73 and x=3.27 to 2 decimal places