How do you find the vertex and the intercepts for y = x^2 - 2?

1 Answer
Nov 3, 2017

vertex at (x,y)=(0,-2)
y-intercept: y=0
x-intercepts: x=-sqrt(2) and x=+sqrt(2)

Explanation:

One way to find the vertex is to convert the given equation into an explicit vertex form
color(white)("XXX")y=(x-color(red)a)^2+color(blue)(b) with vertex at color(red)a,color(blue)b)

y=x^2-2
is equivalent to
color(white)("XXX")y=(x-color(red)0)^2+color(blue)((-2))
the vertex form with vertex at (color(red)0,color(blue)((-2)))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The y-intercept is the value of y when x=0

In this case y=color(green)x^2-2 with color(green)x=color(green)0
becomes y=color(green)0^2-2=-2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The x-intercepts are the values of x which are possible when y=0

In this case color(magenta)y=x^2-2 with color(magenta)y=color(magenta)0
becomes color(magenta)0=x^2-2
color(white)("XXX")rarr x^2=2
color(white)("XXX")rarr x=+-sqrt(2)