How do you find the vertex and the intercepts for #y = x^2 - 2#?

1 Answer
Nov 3, 2017

vertex at #(x,y)=(0,-2)#
y-intercept: #y=0#
x-intercepts: #x=-sqrt(2)# and #x=+sqrt(2)#

Explanation:

One way to find the vertex is to convert the given equation into an explicit vertex form
#color(white)("XXX")y=(x-color(red)a)^2+color(blue)(b)# with vertex at #color(red)a,color(blue)b)#

#y=x^2-2#
is equivalent to
#color(white)("XXX")y=(x-color(red)0)^2+color(blue)((-2))#
the vertex form with vertex at #(color(red)0,color(blue)((-2)))#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The y-intercept is the value of #y# when #x=0#

In this case #y=color(green)x^2-2# with #color(green)x=color(green)0#
becomes #y=color(green)0^2-2=-2#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The x-intercepts are the values of #x# which are possible when #y=0#

In this case #color(magenta)y=x^2-2# with #color(magenta)y=color(magenta)0#
becomes #color(magenta)0=x^2-2#
#color(white)("XXX")rarr x^2=2#
#color(white)("XXX")rarr x=+-sqrt(2)#